Reg. No. : $\square$

## Question Paper Code : 72061

B.E./B.Tech. DEGREE EXAMINATION, APRIL/MAY 2017.

First Semester<br>Civil Engineering<br>MA 6151-MATHEMATICS - I

(Common to Mechanical Engineering (Sandwich)/Aeronautical Engineering/ Agriculture Engineering/Automobile Engineering/Biomedical Engineering/

Computer Science and Engineering/Electrical and Electronics
Engineering/Electronics and Communication Engineering/Electronics and
Instrumentation Engineering/Environmental Engineering/Geoinformatics
Engineering/Industrial Engineering/Industrial Engineering and
Management/Instrumentation and Control Engineering/Manufacturing
Engineering/Materials Science and Engineering/Mechanical Engineering/
Mechanical and Automation Engineering/Mechatronics Engineering/Medical
Electronics Engineering/Metallurgical Engineering/Petrochemical Engineering/
Production Engineering/Robotics and Automation Engineering/ Biotechnology/
Chemical Engineering/Chemical and Electrochemical Engineering/Fashion
Technology/Food Technology/Handloom \& Textile Technology/Industrial
Biotechnology/Information Technology/Leather Technology/Petrochemical Technology/Petroleum Engineering/Pharmaceutical Technology/Plastic Technology/Polymer Technology/Rubber and Plastics Technology/Textile Chemistry/Textile Technology/Textile Technology (Fashion Technology)/ Textile Technology (Textile Chemistry))
(Regulations 2013)
Time : Three hours
Maximum : 100 marks
Answer ALL questions.
PART A - $(10 \times 2=20$ marks $)$

1. Two eigenvalues of the matrix $A=\left[\begin{array}{ccc}8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3\end{array}\right]$ are 3 and 0 . What is the third eigenvalue? What is the product of the eigenvalues of $A$ ?
2. Find the constants $a$ and $b$ such that the matrix $\left[\begin{array}{ll}a & 4 \\ 1 & b\end{array}\right]$ has 3 and -2 as its eigenvalues.
3. Test the convergence of the series $1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots \infty$.
4. Examine the convergence of the sequence $u_{n}=2 n$.
5. Define Evolute and Involute.
6. Find the envelop of the family of lines $\frac{x}{a} \cos \theta+\frac{y}{b} \sin \theta=1, \theta$. being the parameter:
7. If $u=\sin ^{-1}\left[\frac{x^{3}-y^{2}}{x+y}\right]$, then prove that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=2 \tan u$.
8. Find $\frac{d u}{d t}$, if $u=\frac{x}{y}$, where $x=e^{t}, y=\log t$.
9. Evaluate : $\int_{0}^{\pi} \int_{0}^{\sin i \theta} r d r d \theta$.
10. Evaluate : $\int_{1}^{3} \int_{3}^{4} \int_{1}^{4} x y z d x d y d z$.

$$
\text { PART B }-(5 \times 16=80 \text { marks })
$$

11. (a) Verify Cayley-Hamilton theorem find $A^{4}$ and $A^{-1}$ when

$$
A=\left[\begin{array}{ccc}
2 & -1 & 2 \\
-1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right]
$$

## Or

(b) Reduce the matrix $\left[\begin{array}{ccc}10 & -2 & -5 \\ -2 & 2 & 3 \\ -5 & 3 & 5\end{array}\right]$ to diagonal form.
12. (a) (i) Test the convergence and absolute convergence of the series.
$\frac{1}{\sqrt{2}+1}-\frac{1}{\sqrt{3}+1}+\frac{1}{\sqrt{4}+1}-\frac{1^{-}}{\sqrt{5}+1}+\ldots$.
(ii) Test for convergence of the series $\sum_{n=1}^{\infty} \frac{\cos n \pi}{n^{2}+1}$.

## Or

(b) (i) Test the series $\sum_{n=1}^{\infty}\left(\sqrt{n^{2}+1}-n\right)$.
(ii) Test the convergence of the sum

$$
\begin{equation*}
\frac{1}{1.3}+\frac{2}{3.5}+\frac{3}{5.7}+\frac{4}{7.9}+\ldots \tag{8}
\end{equation*}
$$

13. (a) (i) Find the evolute of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, considering it as the envelope of its normals.
(ii) Find the envelope of $\frac{x}{a}+\frac{y}{b}=1$, where $a$ and $b$ are connected by $a^{2}+b^{2}=c^{2}, c$ being a constant.

## Or

(b) (i) Prove that the radius of curvature at any point of the cycloid $x=\alpha(\theta+\sin \theta), y=\alpha(1-\cos \theta)$ is $4 a \cos \frac{\theta}{2}$.
(ii) Find the circle of curvature at $(3,4)$ on $x y=12$.
14. (a) (i) A rectangular box open at the top, is to have a volume of 32 cc . Find the dimensions of the box, that requires the least material for its construction.
(ii) Find the minimum values of $x^{2} y z^{8}$ subject to the condition $2 x+y+3 z=a$.

> Or
(b) (i) Obtain the Taylor series of $x^{3}+y^{3}+x y^{2}$ at (1,2).
(ii) If $u=\cos ^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right)$, then prove that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\frac{-1}{2} \cot u$.
15. (a) (i) Change the order of integration and hence evaluate it $\int_{0}^{4 a} \int_{\frac{x^{2}}{4 a}}^{2 \sqrt{a x}} x y d y d x$.
(ii) Evaluate : $\iint_{0}^{a} \int_{0}^{b}\left(x^{2}+y^{2}+z^{2}\right) d x d y d z$.

Or
(b) (i) Evaluate $\iint(x-y) d x d y$ over the region between the line $y=x$ and the parabola $y=x^{2}$.
(ii) Find the value of $\iiint x y z d x d y d z$ through the positive spherical octant for which $x^{2}+y^{2}+z^{2} \leq a^{2}$.

